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Some observations on the analysis of peg solitaire by computer 
 

John Beasley, 23 / 27 February 2013, minor corrections 15 March 
 
George Bell responded to my posting of On 33-hole solitaire positions with rotational symmetry elsewhere on 
this site by drawing my attention to a paper Solving peg solitaire with bidirectional BFIDA* by Joseph K. 
Barker and Richard E. Korf, which was presented to the 26th AAAI Conference on Aritifical Intelligence last 
year.† In it, Barker and Korf comment on the usefulness of the bidirectional approach (searching back from the 
goal as well as forward from the starting position, and seeing where the two search trees meet) in reducing search 
time.  This was contrary to my own experience when examining the game by computer in 1984-85, when I found 
that incorporating a backward search from the goal would be not merely unhelpful but even disadvantageous, 
and it has occurred to me to revisit my old calculations and to see why we came to such different conclusions. 
 
Background 

Peg solitaire is a peg-jumping game for one person which is normally now played on the 33-hole board shown in 
Figure 1, though in principle a board of any size and shape may be used and many other boards have been tried 
(not necessarily with the permitted lines of movement at right angles, nor even straight).  We shall use an 
algebraic notation much as is used in chess, though chess players are asked to note that in solitaire we put row 1 
at the top.  The rule of play is to jump a peg over an adjacent peg into an empty hole immediately beyond, the 
peg jumped over being removed from the board, and the normal task is to start with the board full apart from one 
hole and to play so as to end with a single peg somewhere.  Once this has been achieved, the game can be 
enriched in various ways, one of which is to regard a sequence of jumps by the same peg as a single move and to 
try and solve the game using the minimum number of separate moves, and it is with this form of the game that 
we shall concern ourselves here.  The game has been discussed in many books and articles, in particular in 
chapter 23 of Winning Ways for your Mathematical Plays by E. L. Berlekamp, J. H. Conway, and R. K. Guy 
(1982, second edition 2004) and in my own The Ins and Outs of Peg Solitaire (1985, paperback edition 1992), 
but this presentation will be complete in itself and readers already familiar with Winning Ways or The Ins and 
Outs are asked to bear with a brief introduction to set the scene. 
 

a b c d e f g a b c d e f g

1 o o o 1 tc s tc 
 2   o o o 2 t ok t 
 3 o o o o o o o 3 sc s ic s ic s sc 
 4 o o o o o o o 4 t ok t ik t ok t 
 5 o o o o o o o 5 sc s ic s ic s sc 
 6   o o o 6 t ok t 
 7   o o o 7 tc s tc 
 

Figure 1 Figure 2 
 
In the form which we shall consider here, the game permits jumps in any horizontal or vertical direction, though 
not diagonally, and since any jump moves a man two holes the pegs are immediately divided into four classes   
as shown in Figure 2.  One of these comprises the twelve corner pegs, which in turn are divided into the four 
side corners (sc in Figure 2), the four top and bottom corners (tc in Figure 2), and the four inside corners (ic).  
We may notice that while a corner peg remains a corner peg throughout its existence, its flavour may change 
during the play, and in particular a side or top and bottom corner peg may and indeed must move to an inside 
corner in order to be jumped over and removed.  The second class comprises the eight s pegs, which again 
remain s pegs throughout their existence, and we note that any jump by a side corner peg to an inside corner in 
order to be captured must consume an s peg.  The third class comprises the eight t pegs, which play a similar role 
in the clearance of the top and bottom corners, and the fourth class comprise the five remaining pegs.  These are 
the pegs which can move to the centre and for this reason I called them “middle pegs” in The Ins and Outs, but     
I now consider this to have been a mistake and regard the old term key pegs as preferable.  They in turn appear 
in two flavours, the four outside key pegs (ok) and the single inside key peg (ik), and while they always remain 
key pegs their flavour may change during the play. 
 

† AAAI : Association for the Advancement of Artificial Intelligence. 
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Brute force and constraints 
 
The simplest way of analysing a game such as peg solitaire, if the capacity of the available machine permits, is 
by an exhaustive enumeration of all possible positions.  Since the board contains 33 holes and each can be either 
full or empty, this appears to require 233 bits of memory, but the positions on a square lattice solitaire board can 
be divided into sixteen classes such that if a position is in a certain class then so are all its progeny.‡ So, given   
a starting position, 229 bits of memory suffice to define all the positions that might be derivable from it, and this 
is sufficient to allow an exhaustive enumeration to be made.  However, all these 229 bits must be held in 
immediate-access memory, otherwise the calculation is likely to be unacceptably slow. 
 
An analysis which takes account of all 229 possible positions may be called an analysis by “brute force”, and 
because it is likely to be the simplest to program it should always be used when the available machine permits it.  
It is always sound practice to write the simplest program that will do the job in an acceptable time on the 
equipment available, and this is particularly important when we are seeking to “prove” something by making an 
assumedly exhaustive search and failing to find a counter-example, because the possibility must always be faced 
that a machine or program error has caused a valid candidate to be overlooked.  However, our assumption here 
will be that only a small fraction of these 229 positions can be held in immediate-access memory, any further 
positions having to be held in a “backing store” to which access is much slower.  Today, machines offering 229 
bits and more of immediate-access memory are commonplace, but it has not always been so, and even with 
today’s machines there are problems for which the immediate-access memory cannot hold all the possible 
positions.  So while what follows will now be academic as regards peg solitaire, peg solitaire provides a 
convenient medium for its exposition, and it may have relevance to problems which have not yet been attempted. 
 

· · · · 1 · –1 · –1 
 · 1 · · · · 1 · 1

· · · · · · · –1 1 · 1 · 1 –1  · · · · · · ·
· 1 · 1 · 1 · · · · · · · · 1 · 1 · 1 · 1
· · · · · · · –1 1 · 1 · 1 –1  · · · · · · ·

· 1 · · · · 1 · 1
· · · · 1 · –1 · –1 

 
Figure 3 Figure 4 Figure 5 

 
The basic idea is that of constraints, which limit the number of positions which need to be stored.  These can be 
divided into absolute constraints, which identify positions from which the goal position cannot be reached at all, 
and relative constraints, which identify positions from which it cannot be reached in fewer than a certain number 
of moves.  Three absolute constraints are shown in Figures 3-5.  In these, values are attached to the holes of the 
board, holes indicated by dots having value zero, and the value of a position is obtained by adding up the values 
of the occupied holes.   Figure 3 simply counts the number of key pegs in the position (clearly, we must always 
retain at least as many as are needed in the goal position).  Figure 4 counts the s pegs similarly, the values –1 in 
the outside corners reflecting the fact that we need an s peg to clear each occupied side corner, and Figure 5 does 
the same for the t pegs.  These are special cases of tables of values for which f(A) + f(B) ≥ f(C) for any three 
holes A, B, and C in line, any such table having the property that the sum of the values of the occupied holes can 
never increase during the play, but Figures 3-5 show the only tables of this kind that we shall need here.§

‡ This can be proved most simply choosing a direction, say NW-SE, and marking off the diagonals in that direction in 
threes, A B C A B C etc.  For any position, we can now count the number of pegs in A, B, and C holes, and note whether 
A + B and B + C are even or odd (nothing is gained by examining C + A as well, since if A + B and B + C are both even or 
both odd then C + A is necessarily even, and if one of A + B and B + C are is even and the other is odd then C + A is 
necessarily odd).  This gives us two parity measures, each of which can be even or odd independently, and if we do the same 
in the NE-SW direction we get two more.  Now the effect of a jump is either to leave the count A + B unchanged or to 
reduce it by 2, so its parity remains unchanged throughout the play, and the same is true of the other counts.  So these four 
parity measures divide the possible positions on the board into sixteen classes, and if the starting position is in a certain class 
then so must be all the positions derived from it. 
 § In passing, I have to say that I regret the perpetuation of the term “pagoda function” to describe tables of values for 
which f(A) + f(B) ≥ f(C) for any three holes A, B, and C in line.  Yes, it is the term that was used by the originators of the 
idea, which is a cogent and many will think an overwhelming reason for its retention, and it is enjoyably and even gloriously 
picturesque, but in truth there is nothing remotely pagoda-like about Figures 3-5, and the employment of such a term 
inevitably gives the impression that something deep and subtle is going on whereas in truth the matter is very simple.          
In The Ins and Outs, I used the term “resource count”, which is relatively banal but does at least indicate the sort of thing 
that is being measured.  “Weighted resource count” might have been even better. 
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 A · B 3/2 · 3/2 
 C · D · –1 ·

E C C · D D F 3/2 · 1/2 · 1/2 · 3/2 
 · · · · · · · · –1 · · · –1 ·

G H H · I I J 3/2 · 1/2 · 1/2 · 3/2 
 H · I · –1 ·

K · L 3/2 · 3/2 
 

Figure 6 Figure 7 
 
Figures 6 and 7 show examples of relative constraints.  Each of the regions A...L of Figure 6 has the property that 
the first move involving it must be a move by a peg within it;  as long as it is full, no peg in it can be jumped 
over.  So if n of these regions are full in a position P and only m are full in a target position T, any sequence of 
play from P to T must involve at least n – m moves.  These regions are normally known as Merson regions after 
Robin Merson, who appears to have been the first to draw attention to their usefulness. 
 
Figure 7 has the property that no move, however complicated, can decrease it by more than 1, so if its value is 
currently x and its value for a target position T is y, we shall need at least x – y moves to get to T (odd halves 
rounding to the next whole number above).  Indeed, we can say more;  any move which starts or finishes on an 
end-of-centre-line hole such as d1 must increase it by at least 1/2.  So, measured by this particular test, such a 
move not only makes no progress towards the goal, but even moves us away from it.** 

The constraints embodied in Figures 3-7 do much to prevent the tree of positions from getting too large, but         
I found I needed further constraints to get the job done on the computer that was available to me in 1984-85.   
We need 29 bits to represent each position, which means four bytes of computer memory, and while these don’t 
all have to be in immediate-access memory (we can write out sorted subfiles to backing store and then merge 
them, much as used to be done when performing commercial data processing using magnetic tape in the 1960s), 
we do have to be able to get them all into the backing store.  In 1984-85, I had only two 100Kb discs available to 
me, each of which could accommodate no more than 25,580 positions (20 subfiles each containing 1,279 
positions plus an “all ones” end-of-file indicator), and this was sharply restrictive.  I therefore applied additional 
constraints based on Figure 8 below.  This represents the top six holes on the board, c1-e2, and we observe that 
the parity of the number of pegs in the three holes marked α can be changed only by a move starting or ending on 
c2 or d1;  a move into or out of c1, or a move alighting on c2 in passing but neither starting nor finishing there, 
has no effect.  By considering the various cases at the various board corners and counting the number of moves 
by s and t pegs necessary to resolve them, I managed to get the position trees down to a size which my machine 
could handle, but the programming was messy, and I was quietly relieved to read in 2002 that Jean-Charles 
Meyrignac had confirmed my results using what were presumably brute-force methods without constraints. 
 

c d e c d e c d e c d e c d e

1 α α · ● ● ● ● o o o ● o o ● o
2 α · · ○ ● ● o o ● o o o o ● o

Figure 8 Figure 9 Figure 10 Figure 11 Figure 12 
 
However, my present purpose is to expound the methods rather than to advance the state of the art, and I decided 
to use the simpler tests typified by Figures 9-12.  Here, we assume a need to clear the end row c1-e1, and we 
observe that in the case of Figure 9 we need a delivery of a t peg to either c2 or e2 (the latter as part of a 
sequence e1-e3, e4-e2, c1-e1-e3).  In Figure 10, we need a delivery to either c2 or d1, and in Figure 11 we need 
a delivery to d2 unless the constraint of Figure 7 prohibits a move out of d1, in which case we need two 
deliveries, to c2 and to e2.  Similarly, in the case of Figure 12, if the constraint of Figure 7 prohibits a move out 
of d1 then we again need deliveries to c2 and to e2. 
 

** In The Ins and Outs, I attribute the equivalent of Figure 7 to John Conway;  in Winning Ways, it is attributed to 
myself.  Both attributions are defensible.  When, back in 1964 or thereabouts, I sent him my proof that a 17-move solution to 
the “central game” (start by vacating the central hole, and play to leave a single peg in this same hole) was impossible, I used 
an argument in words along the lines of “if a move removes more than two inside corner pegs, it must also remove an 
outside key peg”.  He immediately send me a diagram equivalent to Figure 7, which encapsulated the matter in numerical 
terms, and I have used this when expounding the proof ever since.  In other words, the encapsulation embodied in Figure 7, 
which I think valuable, was his, but the observation which it encapsulated was mine. 
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These deliveries by s, t, and key pegs which are needed to clear c1-e1 and the corresponding rows elsewhere 
must be added to the necessary corner-peg moves, and by considering also the absolute constraints of Figures 
3-5 and the relative constraints of Figures 6 and 7 we obtain the figures shown in Tables 1 and 2.  Table 1 shows 
the growth and decline of the position tree for the central game (for the moment, ignore the individual columns 
and consider just the totals on the right), and Table 2 that for the problem “start by vacating c1 and play to finish 
there”, which with these constraints is the most demanding computationally of the problems where we aim to 
finish in the hole which we vacated initially.  In Table 1, we consider positions which can be reflected or rotated 
into each other as the same, so at level 1 we have only one position (as for example after d2-d4) and not four. 
 

Level      14      15      16      17      18     Total 
 
0 1 0 0 0 0 | 1
1 0 1 0 0 0 | 1
2 0 1 1 0 0 | 2
3 0 1 4 2 2 | 9
4 0 0 11      20      10 |      41 

 5 0 0 12      64     104 |     180 
 6 0 0 22     141     406 |     569 
 7 0 0 4 324    1219 |    1547 
 8 0 0 1 193    2962 |    3156 
 9 0 0 0 93    3089 |    3182 
 10         0       0       0      24    2530 |    2554 
 11         0       0       0       5    1454 |    1459 
 12         0       0       0       0     809 |     809 
 13         0       0       0       0     269 |     269 
 14         0       0       0       0     118 |     118 
 15         0       0       0       0      41 |      41 
 16         0       0       0       0       8 |       8 
 -----------------------------------------+-------- 
Total       1       3      55     866   13021 |   13946 

 
Table 1:  position counts for a constrained analysis of the central game 

 
Level      11      12      13      14      15      16     Total 
 
0 1 0 0 0 0 0 | 1
1 0 2 0 0 0 0 | 2
2 0 4 2 0 0 0 | 6
3 0 7 22       3       0       0 |      32 

 4 0 1 88      99      16       0 |     204 
 5 0 0 135     619     477     120 |    1351 
 6 0 0 63    1802    3743    2338 |    7946 
 7 0 0 51    2042   13732   19971 |   35796 
 8 0 0 11    2161   22943   81715 |  106830 
 9 0 0 5 1377   29233  159527 |  190142 
 10         0       0       0     734   28130  222530 |  251394 
 11         0       0       0     498   18005  253325 |  271828 
 12         0       0       0     280    9405  203528 |  213213 
 13         0       0       0      92    5166  117775 |  123033 
 14         0       0       0       0    2019   58327 |   60346 
 15         0       0       0       0       0   23803 |   23803 
 -------------------------------------------------+-------- 
Total       1      14     377    9707  132869 1142959 | 1285927 

 
Table 2:  the corresponding table for the problem “vacate c1, play to finish at c1” 

(the shortest solution to this problem demands 16 moves) 
 
The columns of Tables 1 and 2 show the moves needed to reach the goal as assessed by Figures 6-7 and the need 
for deliveries as typified by Figures 9-12;  if in Table 2 we are at level 6 and the assessment is that any solution 
will need at least 8 more moves, that position is counted in column 6 + 8 = 14.  And we may note that these tests 
are merely restrictive;  for one of them to say “any solution from this position must take at least N more moves” 
does not imply that a solution in N moves exists, or even that a solution exists at all. 
 
The utilisation of endgame tables 
 
All this has been a forward search.  Let us now look at the effect of adding a search backward from the goal.  
Specifically, let us borrow a phrase from the field of computer chess, and talk about “endgame tables”.  If you 
play chess against a contemporary chess program of any quality, you will find that it has access to precompiled 
tables which give the result for any position with up to five or even six men (so that once the material on the 
board has been reduced to this point, the computer can give up the boring business of analysing chess positions, 
and can go back to downloading pictures of young lady computers with no covers on). 
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If we compile similar tables for peg solitaire, we find that they expand extremely quickly.  In the case of the 
central game, we see from Table 1 that the successive levels of the forward tree have 1, 2, 9, and 41 members.   
If we compile an endgame table without constraints, we find that the successive levels have 1, 16, 979, and 
14115 members, and even if we apply the constraints of Figures 3-7 (which apply to endgame tables just as to 
forward searches) these figures are reduced only to 1, 15, 656, and 8993.  Even this reduced level-4 number of 
8993 is nearly three times as big as the largest row total in the forward search.  In the case of “vacate c1, play to 
finish at c1”, we find that the first two levels even of a constrained compilation contain 197 and 5785 members;  
I don’t know how many the third level contains, since I was using the “AVL tree” algorithm and by restricting 
the tree size to 32767 I could get the two addresses and two one-bit balance indicators neatly into four bytes, but 
it certainly exceeds 26785.  It is surely going to be less than the level-13 total of the forward search tree, but I 
would not care to back the level-4 total of the endgame table to be less than the level-12 total of the forward tree. 
 
So endgame tables are not going to be a great deal of help, and if they have to be held in immediate-access 
memory which could otherwise be used to speed up the forward search they may even be disadvantageous.  
There is however one important respect in which they can contribute.  Consider the central game.  The goal 
position has value 0 according to Figure 7, but the last move must gain 1, and the penultimate move can lose at 
most 1/2.  So an appropriate target, if we are aiming for a solution in N moves, is to reduce to value –1/2 at move  
N – 2 rather than to value 0 at move N. Similar remarks apply to the other single-survivor problems. 
 
Can we do better? 
 
The calculations which produced Table 1 did two things:  they found a solution in 18 moves, and (subject to the 
usual provisos concerning the possibility of machine or program error) they proved the non-existence of a 
solution in 17 moves.  To prove the non-existence of a solution in 17 moves required examination of all the 
positions reported in columns 15-17, and in the absence of more effective constraints I do not see how such a 
proof could be produced without examining all these positions.  However, we might perhaps hope to be able to 
find an 18-move solution without having to examine all the positions in column 18. 
 
For example, consider Ernest Bergholt’s 18-move solution as reported in his 1920 Complete Handbook to the 
Game of Solitaire on the English Board of Thirty-three Holes. In our notation, this goes d2-d4, f3-d3, e1-e3, 
e4-e2, e6-e4 (5), g5-e5, d5-f5, g3-g5-e5, c3-e3, a3-c3, b5-d5-f5-f3-d3-b3 (11), c1-e1-e3-e5, c7-c5, c4-c6, 
e7-c7-c5, a5-a3-c3, c2-c4-c6-e6-e4-c4, b4-d4 (18), and if we examine the successive positions according to the 
Merson counts, the need to reduce the value according to Figure 7, and the need for deliveries typified by 
Figures 9-12, we find that after d2-d4, f3-d3, and e1-e3 we can apparently still hope to find a solution in 15 
moves, after e4-e2, e6-e4, and g5-e5 in 16 moves, and after d5-f5 and g3-g5-e5 in 17 moves.  If we repeat Table 
1 with these counts to which these positions contribute highlighted in bold, we obtain Table 3 below. 
 

Level      14      15      16      17      18     Total 
 
0 1 0 0 0 0 | 1
1 0 1 0 0 0 | 1
2 0 1 1 0 0 | 2
3 0 1 4 2 2 | 9
4 0 0 11 20      10 |      41 

 5 0 0 12 64     104 |     180 
 6 0 0 22 141     406 |     569 
 7 0 0 4 324 1219 |    1547 
 8 0 0 1 193 2962 |    3156 
 9 0 0 0 93    3089 |    3182 
 10         0       0       0      24    2530 |    2554 
 11         0       0       0       5    1454 |    1459 
 12         0       0       0       0     809 |     809 
 13         0       0       0       0     269 |     269 
 14         0       0       0       0     118 |     118 
 15         0       0       0       0      41 |      41 
 16         0       0       0       0       8 | 8

-----------------------------------------+-------- 
Total       1       3      55     866   13021 |   13946 

 
Table 3:  Table 1 repeated with the counts to which the Bergholt solution contributes highlighted 

 
Table 3 suggests that if we rerun the calculation, not only rejecting positions for which the shortest solution will 
take 19 moves or more but also rejecting positions for which it will take at least two moves more than some 
other position at the same level, we might obtain an 18-move solution with considerably less effort.  This does 
indeed prove to be the case, as Table 4 overleaf demonstrates. 
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Level      14      15      16      17      18     Total 
 
0 1 0 0 0 0 | 1
1 0 1 0 0 0 | 1
2 0 1 1 0 0 | 2
3 0 1 4 1 0 | 6
4 0 0 11      19       0 |      30 

 5 0 0 12      63       5 |      80 
 6 0 0 22     140       3 |     165 
 7 0 0 4 322      11 |     337 
 8 0 0 1 192     148 |     341 
 9 0 0 0 93    1240 |    1333 
 10         0       0       0      24    1476 |    1500 
 11         0       0       0       5     951 |     956 
 12         0       0       0       0     617 |     617 
 13         0       0       0       0     200 |     200 
 14         0       0       0       0     101 |     101 
 15         0       0       0       0      35 |      35 
 16         0       0       0       0       8 |       8 
 -----------------------------------------+-------- 
Total       1       3      55     859    4795 |    5713 

 
Table 4:  Table 1 recalculated with positions apparently non-optimal by at least two moves rejected 

 
Here, we have found an 18-move solution with fewer than half the position examinations needed when compiling 
Table 1.  The reason for the rogue entries such as “1” for “level 3, shortest possible solution 17” is that positions 
at this level requiring 16 or 17 moves according to the tests turned up before one requiring only 15.  Subsequent 
positions requiring 17 moves were therefore excluded, but it wasn’t convenient to go back and turf out any 
which had already been accepted. 
 
However, Table 3 also suggests that if we rerun the calculation accepting only apparently optimal solutions at 
each level we might not find an 18-move solution at all, and this does indeed prove to be the case.  Examination 
of the Bergholt solution shows why.  After move 8 (g3-g5-e5) we have 
 

● ● ○
● ○ ●

● ● ● ● ○ ○ ○
● ● ● ● ● ● ○
● ● ● ○ ● ○ ○

● ● ○
● ● ●

and the counts of Figures 6-7 and the deliveries typified by Figures 9-12 do not prohibit a solution in 17 moves, 
but the only move to maintain this property is c1-e1-e3, and after this move it is in fact impossible to solve the 
problem even in 18 moves (Bergholt plays c3-e3 here).  This is of course a consequence of the imperfection of 
our constraints, which merely indicate what is not possible and not what is;  but if we had perfect constraints we 
would already have solved the problem. 
 
The same turns out to be true of all the solvable single-vacancy single-survivor problems.  If we reject positions 
requiring at least two moves more than the best found so far at this level, we obtain a shortest solution with 
considerably less effort than if we merely reject positions requiring more than the assumed number of moves in 
the shortest solution, but if we restrict ourselves to apparently optimal moves at each level we do not find a 
shortest solution at all.  Table 5 overleaf shows the result of applying this process to the problem “vacate c1, 
play to finish at c1”, and if we compare this with Table 2 we find that not only is the number of positions we 
have to examine in order to obtain a solution in 16 moves only a small fraction of the number previously 
demanded, but it is even little more than half the number needed to prove the non-existence of a solution in 15 
moves. 
 
With hindsight, therefore, we can see that a viable strategy, in the days before machines offering 229 bits of 
immediate-access memory became readily available, would have been to use a two-stage process:  stage A, to 
find a shortest solution rejecting positions requiring at least two moves more than the best found so far at the 
current level, and stage B, to prove the non-existence of a shorter one using an examination retaining all possible 
candidates.  If in fact stage A had failed to find the shortest solution, because at some point this solution passed 
through a position requiring at least two moves more than some other position at that level, it would have turned 
up during stage B, and no harm would have been done beyond the wasting of a little computing time on an 
unsuccessful attempt to find a short cut. 
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Level      11      12      13      14      15      16     Total 
 
0 1 0 0 0 0 0 | 1
1 0 2 0 0 0 0 | 2
2 0 4 2 0 0 0 | 6
3 0 7 22       3       0       0 |      32 

 4 0 1 88      71       2       0 |     162 
 5 0 0 135     591      11       0 |     737 
 6 0 0 63    1755       1       0 |    1819 
 7 0 0 51    2030      26       0 |    2107 
 8 0 0 11    2153     513       0 |    2677 
 9 0 0 5 1375      61      47 |    1488 
 10         0       0       0     734   10075       0 |   10809 
 11         0       0       0     498   10679     297 |   11474 
 12         0       0       0     280    6913     551 |    7744 
 13         0       0       0      92    4335     295 |    4722 
 14         0       0       0       0    1839   17888 |   19727 
 15         0       0       0       0       0   13431 |   13431 
 -------------------------------------------------+-------- 
Total       1      14     377    9582   34455   32509 |   76938 

 
Table 5:  Table 2 recalculated with positions apparently non-optimal by at least two moves rejected 

 
Other boards 
 
The performance of the analyses described here depends critically on the constraints used, and these in turn are 
specific to the standard 33-hole board.  Other boards require different constraints, and in particular the 6x6 
square board requires little more than a consideration of the 16 Merson regions 
 

A B B C C D
E F F G G H
E F F G G H
I J J K K L
I J J K K L
M N N O O P

These immediately restrict us to 16-move solutions if the initial vacancy is in a corner (because the first move, 
while broaching one Merson region, will now fill another) and to 15-move solutions otherwise, and it was Robin 
Merson’s observation of this in 1962 that has caused his name to be attached to these regions.  John W. Harris 
had found a 16-move solution to “vacate a1, play to finish there”, and Harry O. Davis subsequently found 
16-move solutions to the other solvable single-vacancy single-survivor problems with an initial corner vacancy 
(because the final position must be in the same class as the initial position, a single-vacancy single-survivor 
problem on this board, as on the standard 33-hole board, is potentially solvable only if the survivor ends in a 
hole which is a multiple of three holes in each direction away from the initial vacancy).  Davis also found 
15-move solutions to two problems with the initial vacancy other than in a corner, and Harris subsequently 
added a third.  Harris then attacked the remaining potentially solvable problems by computer, and by August 
1986 he had found 15-move solutions to all but one and had proved this one to require 16 moves.  I don’t know 
what method he used, but a typical home computer of the period offered a mere 216 bytes of immediate-access 
memory for program, data, and operating system together, and I imagine that he used techniques somewhat along 
the lines of those outlined here but with the need to broach Merson regions as his constraint.†† 

†† I reported all this briefly in the 1992 edition of The Ins and Outs and in greater detail in issue 28 (2003) of George 
Jelliss’s The Games and Puzzles Journal (see elsewhere on this site), the latter on the grounds that the work in question had 
been performed seventeen years before, that other people were beginning to reproduce Harris’s results, and that I ought to 
report what I knew if only to establish his priority.  However, it appears that this was unnecessary.  When I had temporary 
custody of David Pritchard’s chess papers following his death, I found that these included a complete run of Michael 
Keller’s World Game Review, and in one of these was an article by Harris which almost certainly contained his own report 
of the work in question.  Unfortunately I neither noted the reference nor made a copy.  These copies of World Game Review 
were forwarded to the Musée Suisse du Jeu in June 2012 with the rest of David’s chess variant papers (see “The Pritchard 
archive” under “Chess Variants” elsewhere on this site). 
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Summary and conclusions 
 
This investigation was sparked off by a wish to explain the different experiences of Barker and Kopf and of 
myself in respect of the usefulness of endgame tables in calculations of this kind.  There are perhaps two reasons 
for this. 
 
● My objective in 1984-85 was not to find a solution in N moves, a task which I judged to be beyond the 

machine which I had available at the time, but merely to prove the non-existence of a solution in N – 1
moves.  I was therefore not expecting the forward search tree and the endgame table to meet.  In fact, rather 
than have the computer simply report “cannot find”, I got it to print out all the positions at the furthest level 
reached, and checked by hand that none of them would lead to a solution (in most cases it was immediately 
obvious).  I would probably have done the same even had an endgame table been available. 

 
● With the constraints employed here, the forward search does not meet an endgame table of any realistic size 

until well after it has started contracting, and by that time the bulk of the work has already been done.         
In these circumstances, any saving in computing time resulting from the use of an endgame table is likely to 
be marginal, and there seems little point in calculating one beyond the point where it starts to provide a 
realistic target for the tests based on Figures 6 and 7. 

 
This has answered the question which prompted the investigation, to my own satisfaction at least, and in the 
process I have come across a method which I had not previously considered:  to search by levels, but rejecting 
positions which appear to be at least two moves worse than the best position so far found at this level.               
Its application to peg solitaire is now academic, but perhaps there will be other contexts in which it will find a 
use. 
 
My thanks to Seph Barker and George Bell for some pertinent comments on the first version of this paper, and to 
Seph Barker for some illuminating and entertaining correspondence throughout. 
 


